Logo Caen

Community

Scientific Papers

Educational kits contain the same products and technologies developed by CAEN for the major experiments worldwide.
This section is dedicated to a collection of scientific papers developed by Academic World using CAEN Educational kits or some subparts.

Overview

Published Papers

Beam Test of the First Prototype of SiPM-on-Tile Calorimeter Insert for the Electron-Ion Collider Using 4 GeV Positrons at Jefferson Laboratory

We recently proposed a high-granularity calorimeter insert for the Electron-Ion Collider (EIC) that uses plastic scintillator tiles read out by SiPMs. Among its innovative features are an ASIC-away-of-SiPM strategy for reducing cooling requirements and minimizing space use, along with employing 3D-printed frames to reduce optical crosstalk and dead areas. To evaluate these features, we built a 40-channel prototype and tested it using a 4 GeV positron beam at Jefferson Laboratory. The measured energy spectra and 3D shower shapes are well described by simulations, confirming the effectiveness of the design, construction techniques, and calibration strategy. This constitutes the first use of SiPM-on-tile technology in EIC detector designs.

Standardisation of 18F using new portable 4πβ(LS) – λ coincidence detection system at ENEA-INMRI

This project concerned with the development at ENEA-INMRI of new in-situ 4πβ(LS) − λ coincidence detection system for activity measurement of the short half-life radionuclides used in Nuclear Medicine. The hardware of the new portable 4πβ(LS) − λ coincidence detection system was implemented at ENEA-INMRI, in collaboration with Catania University and INFN, by adding a gamma channel on the existing TDCR portable detector available at ENEA-INMRI. A new data analysis software was developed at CAEN, independently from an existing one elaborated at ENEA.INMRI, in order to analyse the data recorded in list-mode by the new detector equipped with the CAEN desktop digitizer DT5720. The activity for short half-life radionuclides used in nuclear medicine can be then computed. Two primary activity measurement TDCR and 4πβ(LS) − λ coincidence methods were then used to determine the activity of 18F at ENEA-INMRI. The TDCR parameter is measured for the 18F standard solution using both CAEN and ENEA-INMRI data analysis software.

Investigation of organic scintillators for neutron-gamma noise measurements in a zero-power reactor

Noise measurements in light water reactor systems aid in generating validation data for integral point kinetic parameter predictions and generating monitoring parameters for reactor safety and safeguards. The CROCUS zero-power reactor has been used to support both efforts via measurements with thermal neutron detectors to observe neutron noise and inorganic scintillators to observe gamma noise. The cross-correlation of gamma and neutron noise has been investigated at CROCUS with separate gamma-only and neutron-only detectors. Organic scintillators, sensitive to both neutrons and gamma rays, can be used to cross-correlate gamma-ray and neutron noise with a single detector type. Herein, we present noise measurements using organic scintillators in a light-water, zero-power research reactor for the first time. We discuss data obtained with two 5.08 cm-length by 5.08 cm-diameter cylindrical trans-stilbene detectors and two 6-mm cubic scintillators one trans-stilbene and one organic glass – set in the water reflector of CROCUS and outside the reactor vessel.

Characterization of SiPMs

Silicon photomultipliers, thanks to their excellent performance, robustness and relatively simple use, are the photon-detectors of choice for many present and future applications. This paper gives an overview of methods to characterise SiPMs. The different SiPM parameters are introduced and generic setups for their determination presented. Finally, ways to extract the parameters from the measurements are discussed and the results shown. If a parameter can be obtained from different measurements, the results are compared and recommendations given, which is considered to be the most reliable. The characterisation of SiPMs, in particular for high light intensities and in high radiation fields, is presently a field of intensive research with many open questions and problems which will be discussed.

Training Future Engineers to Be Ghostbusters: Hunting for the Spectral Environmental Radioactivity

Although environmental radioactivity is all around us, the collective public imagination often associates a negative feeling to this natural phenomenon. To increase the familiarity with this phenomenon we have designed, implemented, and tested an interdisciplinary educational activity for pre-collegiate students in which nuclear engineering and computer science are ancillary to the comprehension of basic physics concepts. Teaching and training experiences are performed by using a 4″ x 4″ NaI(Tl) detector for in-situ and laboratory gamma-ray spectroscopy measurements. Students are asked to directly assemble the experimental setup and to manage the data-taking with a dedicated Android app, which exploits a client-server system that is based on the Bluetooth communication protocol. The acquired {\gamma}-ray spectra and the experimental results are analyzed using a multiple-platform software environment and they are finally shared on an open access Web-GIS service […]. Supporting information to the basic physics concepts provided in this article can be found at this http URL.

The EasyPET: A novel concept for an educational cost-effective positron emission 2D scanner

The easyPET concept proposed here, protected under a patent by the University of Aveiro, aims to realize a simple and affordable small dimension Positron Emission Tomography (PET) scanner. This innovative system is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. A 2D imaging prototype has been designed, commissioned and engineered, targeted to high level education for physics, engineering and nuclear medicine students. In this paper the performance of the prototype is reported, with a focus on the imaging capability and on the measurement of the uncertainty in the reconstruction of the source position. In addition, a detailed analysis is dedicated to the slice sensitivity and in particular to the effect of the energy threshold on the coincidence event selection.

An EDUGATE simulation toolkit based on the educational easyPET

EasyPET is a new concept of a Positron Emission Tomography (PET) scanner using an innovative acquisition method based on two rotation axes for the movement of detector pairs. Due to its simplicity, it is suitable for education purposes, to teach students about the PET technology and its basic concepts, from the radiation detecting and analogue pulse analysis to the coincidence sorting and image reconstruction. The concept allows achieving high and uniform position resolution over the whole field of view(FoV), by eliminating parallax errors due to the depth of interaction (DoI), which are typical of ring-based PET systems, so quality images are obtained even without state-of- the-art image reconstruction algorithms. The technology developed at the University of Aveiro with a patent-pending, is licensed to CAEN S.p.A, and included in the educational catalogue of the company. In this work, a simulation toolkit based in the Edugate platform was developed to simulate the EasyPET system.

CAEN Educational: Nuclear and Particle Physics Experiments

CAEN S.p.A., an important industrial spin-off of the INFN (National Institute for Nuclear Physics), is pleased to present its new activities in the educational field. CAEN brings the experience acquired in almost 40 years of collaboration with the High Energy & Nuclear Physics community into the university educational laboratories by providing modern physics experiments based on the latest technologies and instrumentation. CAEN has realized different modular Educational Kits, all based on Silicon Photo multipliers (SiPM) state of-the-art light sensors with single photon sensitivity and unprecedented photon number resolving capability. They have proven to be suitable for anincreasing number of applications in science and industry. The main goal is to inspire students andguide them towards the analysis and comprehension of different physics phenomena with a series of experiments based on state-of-the art technologies, instruments and methods.

Characterization Measurements Methodology and Instrumental Set-Up Optimization for New SiPM Detectors-Part I: Electrical Tests

A comprehensive and in-depth characterization procedure for obtaining very accurate measurements on silicon photomultiplier (SiPM) detectors is described here. A large amount of electro-optical tests are systematically carried out in terms of the most significant SiPM performance parameters; in particular, an accurate estimation of the photon detection efficiency is achieved, based on the single-photon counting technique, with substraction of the dark noise contribution and avoiding the additional noise sources of crosstalk and after pulsing. Some recently produced detectors are analyzed and their relevant electro-optical parameters are evaluated in order to confirm the effectiveness and efficacy of the adopted characterization procedure in assessing the overall SiPM performance. The repeatibility of measurements is carefully verified. All evaluated parameter trends are proved to be compatible with the physics theory of the SiPM device.

 

Characterization Measurements Methodology and Instrumental Set-Up Optimization for New SiPM Detectors-Part II: Optical Tests

A comprehensive and in-depth characterization procedure for obtaining very accurate measurements on silicon photomultiplier detectors (SiPMs) is here described. A large amount of optical tests are systematically carried out and discussed in terms of the most important SiPM performance parameters; in particular, an accurate estimation of the photon detection efficiency in the 350-900-nm wavelength spectral range and in steps of 10 nm is achieved, based on the single-photon counting technique, with substraction of the dark noise contribution and avoiding the additional noise sources of crosstalk and afterpulsing. Some recently produced detectors are analyzed and their relevant electro-optical parameters are evaluated in order to demonstrate the effectiveness and efficacy of the adopted characterization procedure and data-handling protocols in assessing the overall SiPM performance, regardless of the specific device tested. Tests repeatibility is carefully verified and all the evaluated parameter trends are proved to be compatible with the physics theory of the SiPM device.

Reconstruction of the statistics of photons by a pulsed LED using a Silicon Photomultiplier based set-up

Silicon Photomultipliers are a new class of light sensitive detectors with single photon sensitivity and unprecedented photon number resolving capability. These properties open up the possibility to verify the statistics of the emitted light analysing the data collected by the sensor. In this paper, a procedure based on a Multi-Gaussian Fit of the spectrum and a model accounting for detector related effects is proposed and qualified using a LED illuminating a Silicon Photomultiplier.

 

Development of a Silicon Photomultiplier toolkit for science and education

Silicon Photomultipliers (SiPM) are a new class of photon sensors with single photon detection capability and high photon detection efficiency. They have been proved to be suitable for an increasing number of applications in science and industry. Nowadays, different companies are investing increasing efforts in SiPM detector performances and high quality mass production, such to make them a natural choice for an always wider field of applications. In this scenario, a flexible and easy-to-use system that allows the measurement of the main SiPM characteristics has become an important platform to exploit SiPMs in different applications. This system can also be used to setup a series of experiments aimed to train physics and engineering undergraduate and master students in detector measurements and statistics analysis.

Silicon Photomultipliers for Medical Imaging and Dosimetry-an Overview

Silicon photomultipliers (SiPMs) are an enabling solid-state technology for low light sensing, with single photon sensitivity and photon number resolving capability. They feature an extremely high internal gain at the 106 level, comparable to photomultiplier tubes (PMTs), with the advantage of low operating voltage (~50 V compared to ~1000 V for PMT) and low energy consumption. The solid-state technology makes SiPMs compact, insensitive to magnetic fields and with an extreme flexibility in the design to cope with different applications. The fast development of the multiplication avalanche opens up the possibility to achieve time resolution at the 30 ps level. Dynamic range is however limited compared to PMT and the dark count rate relatively high, yet today at the level of 50 kHz/mm2 at room temperature. Interfaced with scintillation material, SiPMs provide a powerful platform for medical imaging applications (in positron emission tomography/computed tomography and in positron emission tomography/magnetic resonance), for X-ray quality control as well as for novel compact radiation protection instruments. This article gives an overview of SiPMs for medical imaging and dosimetry. In addition, a learning and training program targeted to graduate students is described.

easyPET: a novel concept for an affordable tomographic system

The easyPET concept described here aims to reduce complexity and cost of preclinical Positron Emission Tomography (PET) scanners. The system, original in its principle and realisation, is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. The characterisation of a 2D imaging prototype, realised to assess the easyPET concept, is presented in this paper. In particular, a spatial resolution of 1±0.1 mm and a sensitivity of 0.1% with an energy threshold of 80 keV have been measured. These encouraging results, compared to the performances of commercial preclinical PET, motivate the feasibility study of a 3D system.

Application of SiPM for Modern Nuclear Physics Practical Workshop

Silicon PhotoMultipliers (SiPM) are state of the art light detectors with very high single photon sensitivity and photon number resolving capability, representing a breakthrough in several fundamental and applied Science domains. So, introduction of SiPM in to the education is important process increasing the number of specialists involved in the SiPM development and application. As a result of collaborative efforts between industry and academic institutions modular set of instruments based on SiPM light sensors has been developed by CAEN s.p.a. It is developed for educational purposes mainly and allows performing a series of experiments including photon detection, gamma spectrometry, cosmic ray observation and beta and gamma ray absorption. In addition, an educational experiments based on a SiPM set-up guides students towards a comprehensive knowledge of SiPM technology while experiencing the quantum nature of light and exploring the statistical properties of the light pulses emitted by a LED. The toolbox is actually an open platform in continuous evolution thanks to the contribution of the research community and cooperation with high schools.

 

Thesis

Radiographie terrestre avec les rayons cosmiques
Quel est le taux de rayons cosmiques en fonction de l’altitude et de la profondeur géologique ? Théorie et mesures

La physique et l’astronomie en particulier sont des sciences qui me passionnent depuis quelques années et je compte poursuivre mes études dans ce domaine. Le travail de maturité est une occasion d’approfondir un sujet qui me captive vraiment et qui peut m’être utile dans le futur. Lorsqu’on nous a présenté les différentes formes de travail de maturité, je me suis interrogé sur la façon dont je souhaitais conduire mon projet : effectuer un travail de recherche en répondant à une problématique mais également mener un travail d’expérimentation me semblait intéressant. J’ai eu par conséquent l’idée de combiner la pratique et la théorie, en réalisant des mesures tout en répondant à une problématique.

 

 

 

Models

Empty

Interfaces & I/O

Aliquam porta, arcu non tempor lobortis, leo dolor pulvinar justo, eleifend sollicitudin nunc nisi eget enim. Nam quis volutpat lorem. Donec gravida leo orci, quis laoreet arcu condimentum at. Proin aliquam sem quis molestie aliquam. Etiam tincidunt risus sed ex vestibulum, nec maximus turpis eleifend. Donec id nunc quis arcu pellentesque bibendum sed quis magna. Etiam interdum eros vel euismod malesuada. Vivamus malesuada posuere euismod. Aliquam erat volutpat. Aliquam porta nisl nec leo dictum, at posuere ante aliquet.

Software

Aliquam porta, arcu non tempor lobortis, leo dolor pulvinar justo, eleifend sollicitudin nunc nisi eget enim. Nam quis volutpat lorem. Donec gravida leo orci, quis laoreet arcu condimentum at. Proin aliquam sem quis molestie aliquam. Etiam tincidunt risus sed ex vestibulum, nec maximus turpis eleifend. Donec id nunc quis arcu pellentesque bibendum sed quis magna. Etiam interdum eros vel euismod malesuada. Vivamus malesuada posuere euismod. Aliquam erat volutpat. Aliquam porta nisl nec leo dictum, at posuere ante aliquet.

Request info

Aliquam porta, arcu non tempor lobortis, leo dolor pulvinar justo, eleifend sollicitudin nunc nisi eget enim. Nam quis volutpat lorem. Donec gravida leo orci, quis laoreet arcu condimentum at. Proin aliquam sem quis molestie aliquam. Etiam tincidunt risus sed ex vestibulum, nec maximus turpis eleifend. Donec id nunc quis arcu pellentesque bibendum sed quis magna. Etiam interdum eros vel euismod malesuada. Vivamus malesuada posuere euismod. Aliquam erat volutpat. Aliquam porta nisl nec leo dictum, at posuere ante aliquet.

Brochure

Aliquam porta, arcu non tempor lobortis, leo dolor pulvinar justo, eleifend sollicitudin nunc nisi eget enim. Nam quis volutpat lorem. Donec gravida leo orci, quis laoreet arcu condimentum at. Proin aliquam sem quis molestie aliquam. Etiam tincidunt risus sed ex vestibulum, nec maximus turpis eleifend. Donec id nunc quis arcu pellentesque bibendum sed quis magna. Etiam interdum eros vel euismod malesuada. Vivamus malesuada posuere euismod. Aliquam erat volutpat. Aliquam porta nisl nec leo dictum, at posuere ante aliquet.

Contacts

Great to have you back!